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Abstract--An attempt has been undertaken to explain and describe, analytically, many of the features of 
recent experiments and numerical calculations of the homogeneous turbulence evolution in media stratified 
on density or temperature. Applying various variants of a small parameter method, let us analyze a set of 
asymptotic regimes of turbulent velocity and scalar fields development in the final stage of turbulence 

decay. © 1997 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

In a number  of experimental and theoretical works, 
analyzing grid-generated turbulence decaying in a 
stably stratified fluid, the periodic oscillations of the 
convective vertical mass flux were detected, as well as 
the oscillations of squared velocity and scalar fluc- 
tuations. These oscillations produced by buoyancy 
forces can be treated as internal gravity waves in tur- 
bulent flow. At some conditions internal waves can 
interchange their kinetic and potential energy with 
irregular turbulent motion radically changing the rate 
and character of turbulence decay. One can find a 
brief review of works dealing with the problem in refs. 
[1-6]. 

This paper represents the second part of our study 
aimed at analytical and semi-analytical investigation 
of the second-order turbulence model developed earl- 
ier in ref. [7] and applied to the problem of stably 
stratified grid-generated turbulence in ref. [5]. Paper 
[5] numerically studied homogeneous turbulence hori- 
zontally propagated in vertically stratified media. The 
results were found to accord with previously obtained 
ones in experiments by Itswier et al. [4], in a salt water 
tank and by Lienhard et al. [2], in an air wind tunnel. 

Here, as well as in the first part of  current work, 
[6], an analytical study of stratified homogeneous tur- 
bulence is carried out on the basis of the same model 
as in ref. [5] and with the same initial conditions. It 
allows us to compare the results thoroughly. Ana- 
lytical treatment of the problem lets us describe the 
specific features of stratified turbulence more clearly. 
On the other hand, naturally, only those features that 
the theory itself contains, [7], can be obtained this 
way. 

In the first part of the paper, [6], with a small par- 
ameter decomposition on an inverse Froude number  
using the multiple scale method (see, for instance ref. 
[8]), the basic set of  governing equations was split into 
subsystems describing non-linear internal waves and 
wave averaged behavior of turbulence. The phase and 
frequency of internal gravity waves and relations 
between amplitudes were obtained in ref. [6] explicitly, 
while the rest of the parameters (wave averaged func- 
tions and amplitude of vertical mass flux) were to be 
found numerically, on the ground of a more simple 
equation set. The aim of this paper is to find out the 
analytical solutions for this second group of par- 
ameters in the asymptotic case of weak turbulence 
(final stage of turbulence decay) discussing the inter- 
action of internal waves and active turbulence. 

2. FINAL STAGE ANALYSIS 

In this chapter we shall consider a final stage of 
turbulence decay at z ~ oo and R;~ << 1. The condition 
R;~ << 1 means the weak turbulence, that is the tur- 
bulence with negligible inertia. Later, in another paper 
we shall discuss the possibility of turbulence Reynolds 
number  not being small in a final stage of turbulence 
decay. 

Earlier in ref. [6] it was shown that at large distances 
downstream the turbulence source (distant area) the 
evolution of stratified turbulence can be considered 
as a singular problem in a sense of small parameter 
methods (see, for instance ref. [11]), because the 
differential order of the model is lowered. In distant 
and final areas (in our analysis the latter is a partial 
case of the former at z ~ oo) the equation for con- 
vective mass flux, q, degenerates into an algebraic 
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NOMENCLATURE 

E = u~/U 2 dimensionless kinetic energy 
F = N M / U  inverse Froude number 
K = u2/u~ anisotropy coefficient 
M cell size of a grid 
N -- (9 dp/~ dx2) ~/2 Brunt-Vaisalti 
Q = ( - u ~ ) / ( U M d ~ / d x 2 )  dimensionless 

vertical turbulent mass flux 
Rz = (5ET~Re) ~/2 turbulence Reynolds 

number 
Re = UM/v Reynolds number 
T~ = (u,? U)/(~,M) time scale of velocity field 

1 

T~, = (p2U)/(epM) time scale of density field 
U flow velocity 
u,? doubled turbulence kinetic energy 

(TKE). 

Greek symbols 
e = F 2 small parameter 
e; rate of dissipation of density 

fluctuation 
~ rate of dissipation of velocity 

fluctuation 
a molecular Prandtl number 
z = z*U/M dimensionless time 
r* dimensional time 

~ z , t = e T p  
1 

® = p=/(Ma~/dx2) 2 squared density 
fluctuation. 

form (if = 0, where .~ = / f + O ( d ( / ~ - 1 / 3 ) - 2 / 3 )  [6]), 
which is maintained with a great degree of accuracy. 

In theory [7] the dimensionless parameter 
d(R~) = l - 2 / ( l + x / l + 2 8 0 0 / R ~ )  is equal to d =  0 
for asymptotically strong turbulence, Ra >> 1, and to 
d = 1 for asymptotically weak turbulence, Rz << 1, 
describing the influence of turbulence inertia effects. 
In the approach of asymptotically weak turbulence at 
d ~ 1, and z >> 1 the set of differential equations of 
the model (see system (9) from ref. [6]) can be written 
in more simple form as 

4 t d/£ 7d'(/~-1/3) 
- + 2¢j ( / ~ -  4/5),  

5 R~ dt R 

4 t d/~ 4 
5 Roo dt - ~(1 -/~tRoo)-2(1 -~z/~)/~,  

0 = / ~ +  8r(d(/~ - 1/3)-2/3), 

4 t dff 
- 2 ( /~ - '  - 1 ) g +  2~(1 + 0) 

5 Roo dt 

4 t5Ro~ d(d)dt- d'[2 --~-6/5 _2(2_a2i~)0]  (1) 

where the upper lid denotes the function averaged 
over internal wave oscillations. In equation (1) func- 
tion K =~/u-~-,. represents the part of turbulence kin- 
etic energy (TKE) that is due to vertical fluctuations 
of velocity, R = T,/Tp is the time scale ratio: 0 = P~ 
1 - 2 5pui = FZ®/E is the ratio of potential energy of den- 
sity fluctuations to TKE, ~2---2d~r/(1 +a) (a~+3/5 ) ,  
d ' =  I - d ,  q = eTpQ/E, t = eTp. Turbulent Prandtl 
number cro~ and time scale ratio R~ at infinity time in 
a passive scalar case (F = 0) are given from the exact 
analytical solution by ref. [12], 

I ( 2o )3/2]_, 

1 1 

I / 2a ,~J/2 -1-1 
× 1 - 2 t 1 ~ - ~  ) +°"/2J . 

Let us present the solution of equation (1) as a sum 
of asymptotic limits (with the index A) and additives 
(with primes)vanishing at t ~ oo according to power 
decay laws 

f =.fA + f ' ,  f '  = Ci t-a', i = K,R,O,q,d (2) 

where f is one of the functions /£, /~, if, 0, d. All 
the exponents fli in (2) should be positive. When the 
functions/~, K, if, ~, dtend to their asymptotic limits, 
the derivatives in left-hand side of (1) vanish, so the 
limits can be found from the algebraic system 

0 = 2 q A ( K A - - 4 / 5 ) ,  

0 = (1 -RA/Roo) -2(1- -~2RA)RAqA 

0 = KA + O A ( K ~  -- 1), 

0 = 2(RA ~ -  1)OA +2q~(1 +OA). (3) 

The equality in the first equation of system (3) is 
possible in two cases : (A) at qA - - - - -  0 ; and (B) at qA =# 0, 
in the latter case KA = 4/5. We shall also allocate 
subcases (A1) qA --- 0, ,gA ~ 0 and (A2) qA = O, ~A = O. 

In case A1 can find step-by-step from the line of 
equation (3) marked in parenthesis above the equality 
sign the following 
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(l) (2) (3) 
qA=0, RA=R~, ,gA=KA/(1--KA), 

(4) (2),(4) 
RA =,  R~ = 1 

The asymptotic limit KA remains uncertain. The 
function R~(a) takes the value R~ = 1 at the molec- 
ular Prandtl number a = 1. Hence, case A1 cor- 
responds to the value a = 1. 

In case A2 we obtain 

qA =0 ,  RA =R~,, KA =0 ,  ~gA =0 ,  (5) 

and in case B, respectively, 

KA =~, 9A =4 ,  qA = ~ ( I - - R 2 ' ) ,  

where RA is determined as a root of the quadratic 
equation 

~2R2 - (l  +o~2 +~ot3 )RA +~ = O 

and ~3 = 4d/5R~. The question of which of the roots 
of equation (7) should be selected and which ranges 
of the molecular Prandtl number, a, expressions (5), 
(6) correspond to, we shall consider later. 

To deduce equations for additives let us term-by- 
term subtract relations (3) from relations (1) and lin- 
earize the system for additives, neglecting squared 
terms. Depending on the case we consider, A1, A2 or 
B, we get three different systems. 

For case A1 the procedure of linearization results 
in 

4 dK' 
t - ~  = -- 7d'(KA - 1/3) - 2q' (KA -- 4/5) 

4 dR' 4 
~t-~T : ~ ( -R ' )  

4 d0' 
~ t ~ f  = --29AR'+Zq'(1 +oa~) 

0 = (l +O~)K'+O'(KA - 1 ) -  d'gA (K~ - 1/3) 

4 d(d') 3/5d'. 
~t dt - 

For case A2 it follows 

4 t dK' 
5 R~ dt 

4 t d R '  
5 R~ dt 

4 t dg' 

5 R~ dt 

0 

4 t d(d') 

5 R~ dt 

7 d '  8 

3R~  5 q' 

4 
' R  5 R / ~ -2(1  -eqR~)R~q' 

= K ' - 9 ' ,  

3 d '  
5R~ 

and, at last, in case B the system for the additives 
(4) takes the form 

4 t dK' 4 9 _ _ ( ,  8 1 
5R~ dt 1 5 d + 5 "  

R 1), 

4 t dR" 4 
(1 -RA/R~)d" 

5R~, dt 5 

4 
- ~(R21 42(1 --RA)(I -20t2RA))R' 

-2(1  --~2RA)RAq', 

4 t d 0 '  2 ( 1  ) 8 
5R~ d t - 5  RAA - 1  9 ' + 1 0 q ' - - ~ A R '  

(6) 

28 , 
0 = 51('-0"/5- ~ d ,  

4 t d ( d ' ) _ d '  I _  6 _2(2_a28A)~( l_Rs , ) I .  
(7) 5 R~. dt 2 5R~ 

(10) 

Now we shall sequentially consider cases Al,  A2 
and B, described by systems (8)-(10). Solving these 
systems, it should be taken into account that these 
equations are correct approximately, with an accuracy 
to neglected terms. At t ~ ov the terms rejected are 
certainly much less than the terms included, however, 
some of the terms included can also be of a small 
order depending on the exponents ill. To investigate 
the problem we shall carry the asymptotic analysis 
using the symbols of the order of magnitude, defined 
as O(f') = d(lnf ' ) /d  Int. 

In case A2 the function K' and 9' are equivalent, so 
the 9'-function can be excluded from the consider- 
ation. It follows from the fifth equation of system (9), 
that O(d') = - 3/4. The second equation in system (9) 
can be solved separately from the system. From the 
third equation of system (9) we can find out, that 
O(K') >10(q'), otherwise the function 9' would vanish 
and the system would become over-determined. If a 
strict inequality O(K') > O(q') takes place, analyzing 
the first equation we have to recognize, that 

(8) O(K') = O(d') = -3 /4 ,  but this order of K' does not 
correspond to the order of K' in the third equation, 
O(K') = 0(9') = 5 /2(R~-  1). Hence, we have to con- 
clude that O(K')= O(q'). The order of magnitude 
O(d') in the first equation can be less than the order 
of q' or equal to it, O(d') <~ O(q'). We shall consider 
the two variants separately. 

(9) 

Case A2a : O(K') = O(9') = O(q') = O(d') = - 3/4 
Substituting the expected form of solution 

O' = K' : CK t-3/4, q" : Cq1- 3/4, d" = c d t  3/4 into the first 
and third equation of system (9), we determine the 
ratios of the factors CK/Cq and cu/cq as 

_ 13 ,~-I 
eK/Cq = co/Cq = 1 10R~) ' 
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9 24 
c,d% = - j~cx lc~+ ~ R ~ , .  (11) 

From the second equation of system (9) it follows 
that O(R') = O(q'), otherwise O(R') > O(q'), and the 
order O(R') = - 1  calculated from the second equa- 
tion of system (9) appears less than the order of mag- 
nitude O(q') = - 3 / 4 ,  but this assumption is incon- 
sistent. From system (9) we find the ratio ce/Cq to be 

cR/Cq = 10R2(1-ctzR-~:). (12) 

The factor cq remains uncertain. 

Case A2b: O(K')  = O(~') = Ol (q ' )  > O(d') 
In this case the function d' tends to zero at t ~ ov 

faster than other functions. Replacing oa' with K' in 
equation (3) system (9) and excluding q' from equa- 
tions (1) and (3) system (9), we obtain 

O(K') = -- 1: (R~ - 1 ) .  (13) 

The exponents in power laws are determined by the 
first equation of system (9) 

l0 
fl, = ~ ( R ~ -  l). (14) 

From equations (1) and (3), system (9) we find that 

q" = ~ ( 1 - R L I ) K  '. (15) 

Substituting the power law expressions with the 
exponent -/3~ into system (9), we can find the ratios 
c,dc~, c~/c~ 

2 5 (1-o;2Ro~)R ~ (16) 
cK/Cq = ~ R~,  cR/c  u = - 

2 (1 

Finishing the consideration of case A2 let us compare 
the expressions for two of the variants, A2a and A2b. 
The exponent fl~ should be positive, whence R~ > 1. 
On the other hand, the exponent/3~ </32 = 3/4, other- 
wise rejecting the terms with d' in equation (1), system 
(9) is wrong at large t. At small a the exponent fl~ is 
large, fl~ > f12, so variant A2a is realized. Starting from 
some value of ar~, determined by the relation, 

10 1 3 
- -~  - (R~(O 'TI ) -  ) = - - 4 '  

variant A2b is realized. 
Analysis of cases B and A 1 can be made according 

to the same scheme, so we shall omit the details. In 
case B two variants are also possible, BI and B2. In 
the former 

O(K') = O(O') = O(R') = O(q') > O(d'), (17) 

and in the latter 

O(K') = 0(0") = O(R') = O(q') = O(d'). (18) 

In case B I the exponent can be determined from 
the first line of system (10), since the function d' dis- 

appears from it. Denoting O(K') = 0(~')  = 
O(R') = O(q') = -/3, ,  we find out, that 

/3, = - 2 R ~ ( 1 - R 5 ' ) .  (19) 

In case B the asymptotic value of the time scales 
ratio, R, is determined by the solution of quadratic 
equation (7). At d = 1 the solution of equation (7) 
has the form 

1 1 1 ~ ( 1  -~-0~ 2 -[- 1/2R~) 2 --6~2 

2~ 2 

(20) 

Rearranging the expression for the discriminant D 

D = (1 --~2 + 1/2R~) 2 +2~x2(1/R~,~- 1), 

we obtain that D > 0, if R~ < l, so the case cor- 
responds to the values of R~ (a) < 1 and to tr > I. 

From the condit ion /3~ > 0 it is necessary, that 
RA--1 < 0 in equation (19). From equation (20) it 
follows that 

2c~2 (R A - 1) = (1 --~2 + 1/2R~) 

x/(1 --c~ 2 + 1/2R~) 2 + 2c~2(RL ~ - 1) < 0 

so the root in equation (20) should be taken with a 
minus sign. 

For the second branch, B2, the exponent/32 is ident- 
ical for all the functions:  O(K') = 0(0") = O(R') = 
O(q') = O(d ' )=  -/32. This exponent can be deter- 
mined from the equation for d' in equation (10) at 
d--*l  

Rr~ (3 
fl~ = ~ \ ~  + ( 2 -  ~2RA)(R~ - 1)~. 

/ 

Using equation (7) the expression for f12 can be written 
shorter as 

[42 = R ~ ( 1 -  1 (21) 

If this value of f12 is larger than the value of fl~ from 
equation (19), the branch B1 is realized, as 
O(d') < O(K'). The condition of the branch B2 val- 
idity is given by the inequality f12 ~<fl~ which takes the 
form RA <~ 7R~/ (12R~. -2 ) .  At cr ~ 1 these 
conditions, as it is easy to see, are not  satisfied; at 
increase of Prandtl  number  from unity up to the tran- 
sition value ~r2 ~ 1.7 branch B1 is realized, and from 
at2 up to ~ = oo branch B2 is valid. For  branch B2, 
as well as for branch B1, R A -  1 <0.  It means that the 
root of equation (7) should be taken with minus sign. 

Substituting the expected power solutions into sys- 
tem (10), we obtain for the ratios of coefficients at the 
powers : 
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in case B 1 : 

C K 1 [1+ 
Cq 5 ( R j  ~ -- 1) k 

C,tl C K C R 
- - - -  25 , - 
Cq Cq Cq 

in case B2 

] 
RA[(1 --o~2RA) -1 -- 2/3~] 

5 R A R ~  

2 ( 1 - ~ 2 R 4 )  I -2/31 

where 

cR a4as  - -a3  Ca al  - - a 2 a 4  

Cq a l a s  - - a 2 a 3  Cq alas - -a2a3  

I - a 6  , = 2 5 a 6 -  
Cq Cq Cq 3 / c q  ' 

(22) 

(23) 

15 1 4 RA 
a l = - - 3 +  4R~ 2R~ ' a2 5R ] , a3 1 R ~ '  

a 4 ---- - -  ~ (1 -~2RA)RA, 

3 

a6 = - 9 8 / ( -  72 + 42R~ i + 12R L 1 ). 

Now we can plot the dependence of  the exponent 
in equation (2) on the molecular Prandtl number. For  
both cases A2 (variants A2a and A2b) and B (variants 
B1 and B2), corresponding to Prandtl numbers ~r < 1 
and a >  1, the exponent /3 is calculated as 
/3 = min(fl~,/30, where the value of/31 is determined 
by the rate of  the function K' variation, and the value 
/32 by the rate of  the function d'. 

Figure 1 (a) plots the exponents fl~,/32 and the result- 
ing exponent/3 vs molecular Prandtl number together 
with the variation of  the ratio RA and of  the asymp- 
totic value of  wave averaged mass flux qA calculated 
according to relations (5) and (6). At a ~  1 the 

exponent fl tends to zero. At  increase of  cr starting 
from the point a = 1 the value of  RA begins to differ 
from the value Roo. At tr -~ oo the value of  RA tends 
to about  0.15, and Roo to 0.2, so the ratio R A / R ~  tends 
to 3/4 (Fig. 1 (a)). At  tr > 1 the turbulent mass flow qA 
is negative and attains the value of  about  - 6 8 / 1 5  at 
a ~ oo. The fact, that qA = 0 at Cr < 1 and qA # 0 at 
~r > 1 means, according to the definition of  qA, that 
the difference of  exponents in equation (2) for Q and 
/~ is less than unity at a < 1, and is equal to unity at 
a > l .  

Substituting the asymptotic limits R A and qA into 
the equation for T K E  

t d/~ _ 2 (/~_~ + q) 

/~d t  p 

we obtain for the exponent/3e 

t d/~ ['5/2 at er < 1 
(24) 

fiE-- /~ dt [ R ~ ( 2 + I / 2 R a )  at a > 1 

At  asymptotically large Prandtl number a >> 1 the 
values of  R~ and cr,o are respectively equal to 0.2 and 
0.164. The value of  R A is equal to 0.15 and the value 
of  R A / R ~  to 3/4. So, the exponent in the power law of  
the T K E  decay at t --, oo and er --, oe is essentially tess 
than the exponent 5/2 in the first line of  equation 
(24) at ~r < 1. The dependence of  this exponent, fiE, is 
plotted against the Prandtl number, a, in Fig. 1 (b). 
At variance of  cr in the range from 1 up to about  10 a 
smooth variance of  fie from 5/2 to unity occurs. 

Appropriate to equation (24) the power law depen- 
dence for the T K E  

E = E a t - &  

reveals (Fig. 2) a very good conformity with the 
numerical calculation of  ref. [5]• The T K E  com- 
ponents RH, R= and R33 decay with the same rate as 
E a t  ~ > 1. In the final stage of  decay E i s  determined, 

R A 

R ~  

1.6~ - -  - - . \  , Is ~ o  l o ~  , 

q ~', - 136 

1.2 ~ ~ ~ b Rk ~ ~[ 1L 

q ~ .... R~ i 
--2 6 ~I i ~E 

q l ' - - - - -  qA i 
0 . 8 ~  \ qA ~ ' ' 

! . . . . . .  ~ (a )  j - 3  4 " 

I -1 '\" / 
1E-3 1E-2 1E-1 1E+O 1E+1 1E+2 1E+3 1E+4 0.01 0.1 1 10 100 1E+3 1E+4 

o" o" 

Fig. 1. Variation of the exponents with molecular Prandtl number cr: (a) variation offl~, f12, fl = min(fl~, f12), 
RA, R~ and qa ; (b) variation of fie, flo, !30"/E, ,80. 
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1E-3- -  

~E-~-~E-~-~E-'- " ~ _  . . . . .  A i r  
tE- -7- -  

~-gt~-"-- X - -  W a t e r  
~ ( -~0 - -  

,~-,~- [51 fo r  a i r  
1E-13 - -  

~-~-~-1~- \,, ~ * [5] for w a t e r  
1E-16 - -  

1 ( - 1 8 - -  
1 E - l g - -  

E 1ff-20- 
1E-21 - -  
1E-22- -  
1E-25--  
1 E-24 - -  
1 E -25 - -  
1 E-26 - -  
1E-27--  \ 
1E-2B-- "~ 
1 E-29 - -  \ 
1E-30--  \ 
1£-31 - -  
1E -32  -- ~" 
1E-33--  \ 
1E-34--  \ 
1E-55- -  ~, 
1E-36--  \ 
1E-37--  

~E-3~ I l I I I I I I I I [ [ I I l I I I I I I l I 
+ + + + + + + + + ~ . . . . . . . . . .  ~ ~ ~ 

N~ 
Fig. 2. Evolution of turbulence kinetic energy. Lines pre- 
dicted according to equation (24) ; symbols numerically cal- 

culated in ref. [5]. 

mainly, by its vertical component  R22. The kinetic 
energy input from the potential energy of  scalar field 
is distributed into the component  R22 , from which it 
is redistributed into other components.  

At  a < 1 the kinetic energy E and its component  
R22 decay with the different rates. The exponent in the 
power law for component  R22 is equal to:  #R= 
= f ie+ fiX, where fie is determined by equation (24), 

BK = min (fib 3/4), and flj is given by expression (13). 
As #K > 0, the component  R22 decays faster than the 
turbulence energy itself. Accordingly, the fluctuation 
field becomes flat at tr < 1 in the final stage of  decay 

and consists of  the fluctuations in the directions of  
orts 1 and 3. 

Differentiating the third equation in equation (3) 
and substituting the derivatives from system (l),  we 
obtain 

(~  ' - 1 ) ( R -  1)g 
4 =  (1 + g ) ( 2 / £ - 9 / 5 )  " 

This expression is a special case of  expression (15) 
from ref. [6] at d ~ 1 and p~ ~ 0. Using the relation 
/,2 = 0/(0 + 1) which follows from ,~= = 0 at d -- 1, one 
can exclude 0 from the last expression 

( / ~ - ' -  1)(/(-- 1)/~ 
0 = (2 /~ -  9/5) (25) 

Relation (25) is universal to the variance of  molecular 
Prandtl number as well as expression (15) from ref. 
[6], which is a rather good approximation for the case 
of  air (Fig. 3(a)) not  only in the final stage of  decay, 
but also in the whole distant area. For  the case of  
water (Fig. 3 (b)) the agreement is worse due to a much 
slower tendency of  the d-function to unity. It is proven 
by the comparison (Fig. 3) of  dependencies (25) with 
the more general relation (15) from ref. [6]. Here, we 
should remember, that for air with the Prandtl number 
a = 0.73 asymptotic variant A2b is realized, in which 
the function d' decays faster than the other functions 
in system (9). For  salt-water with the number a >> 1 
this function decays with the same rate, as the other 
functions. 

In the case of  water the power solution conforms 
with the numerical calculation only at ~ > 10 H (see 
Fig. 3(b)). At  the same time functional dependence, 
equation (6) is roughly valid for the whole distant 

0.028= 

0.024-  

0 .020-  

0 .016-  

0.012-  

0.008-~ 

0.004-~ 

0.000 

+ 
L d  

\ 

\ i 

\ \ \  
\ \ \  

\ \  ", 

\ ',5 
\2.1, 

(a) 

* 1 

2 

. . . . . . .  3 

.............. 4 

0 -  

< ,% 

I 1 r I I I -  I I - I  
p-- 0 0  (TI O ~ o ,J  t¢3 "~- if3 + + + . . . . . .  
tJ LJ t~ + + + + + + 

kad t . d  tad LaJ ~ L.O 

- 1  

- 2  
q 

- 5 -  

- 4 -  

- 5  

.............. " - .  (b) * 1 

I I I I I I 1 I I I I i I I I I I I I I I 
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area, Fig. 3 (b). For  air the power solution corresponds 
to the numerical calculation rather well. The factor Cq 
in power dependence (2) was taken from the numerical 
solution at t ~ or. 

Having determined the factor Cq, it becomes possible 
to calculate (according to relation (16) for air and 
relation (23) for water) the values of coefficients q in 
power laws (2) for the other functions and to compare 
them with the numerical solution. 

Figure 4(a) shows such a comparison for the func- 
tion K, representing a part of  vertical fluctuations in 
TKE. For  air the conformity of power solution (2) (at 
fix given by equation (14) and c~ by equation (16)) 
with the numerical calculation of ref. [5] is better, than 
for the water case, defined by formulae (2), (21), (23). 
For  air in the final stage of turbulence decay the power 
solutions for the functions K'  and ,9' coincide each 
other, so numerical data for ,9 are also indicated. 

The ratio ~/69+ 1) represents the part of potential 
energy in total energy (potential plus kinetic), the ratio 
1/(~+ 1)-- the part of  kinetic energy. As easy to see, 
there is no fossilisation in a final stage of turbulence 
evolution at a < 1, when 0 ~ 0 .  At a > 1 the ratio 
0/(O+ 1) tends to 4/5. As it was pointed out in ref. 
[18] vertical mass flux pw is the best diagnostic tool 
for distinguish turbulence from waves, p~  will have 
mean zero value for random internal wave free of 
turbulence fluctuations. Gerz and Schumann, [14], 
show at fossil states the vertical flux is not zero, 
pw # O, because of turbulent mixing occurring at low 
scales, Lo - Lx. It was also pointed out in refs. [3, 15, 
14] that fossilisation takes place only at a > 1. Our 
analysis fully supports this point of  view (see also plot 
of qA in Fig. 1 (a)). 

The power law dependence R(t) for air (Fig. 4(b)) 
practically coincides with the numerically calculated 

data. A small divergence is caused by the fact that the 
value of R was recorded in numerical file only with 
two significant figures. For  water the conformity 
begins only since ~ = 1015. The formula for asymptotic 
value of RA, (20), has wider area of applicability. 

Knowing the asymptotic limits for all the functions, 
it is easy to deduce the oscillation frequency and 
amplitudes in the final stage of decay. 

From equation (19) at d ~  1 it follows for the fre- 
quency, (o, that 

092 = 2(1 + $ ) ( 9 - 2 R ) .  (26) 

Expression (26) can be simplified, taking into account, 
that in a final stage (1 + 3 )  = ( 1 - K )  - l ,  so 09 depend 
on k only 

m 2 =  2 (9  K)  
(1--/~) 5 - 2  " (27) 

In the case cr < 1 the asymptotic value of ~o 2 results in 
~o z = 18/5, and in the case a > 1-- in  ~o 2 = 2. Accord- 
ingly, the asymptotic limit of  the oscillations period 
T = 2rt~o is equal to x f ~ n / 3  = 3.30 at a < 1 and to 
T = x/2n = 4.44 at a < 1 (see Fig. 5(a) from ref. [6]). 

In ref. [3] the fossil turbulence was investigated by 
the DNS method. As earlier in ref. [17], DNS in ref. 
[3] started from ideal fossil conditions, that is from a 
field at rest with zero turbulence kinetic energy, but 
non zero potential energy of density fluctuations, 
O0 # 0, E = 0 ; later the part of potential energy was 
transformed to kinetic energy during a wave-type pro- 
cess. The potential energy was converted at first into 
Rz2-component and then redistributed to other com- 
ponents. In this regime R22 turns out to be larger than 
R1] and R 3 3  (K = R22/E = 0.7 in ref. [3], K = 0.8 in 
our analysis). Such distribution of TKE is in contrast 
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to that started from the initial conditions of another 
type, ~0 = 0, E ~ 0, [14], which leads to suppressing 
R22 component  in a flow. In view of the fact that the 
oscillations in ref. [3] were masked by varying the 
averaged over the oscillation variables (those with 
hats in our analysis), the wrong conclusion was made 
concerning the noticeable variance of frequency. As 
it is easy to see, after deducing averaged over the 
oscillation values from the values presented in Fig. 1 
from ref. [3], the period of oscillations turns out to be 
nearly constant, Nr*/2~  = 0.52, T = N~* -- 3.3, 
coinciding with that of current analysis (see also Fig. 
5(a) in ref. [6]). The value of Nr*/2~  ~ 0.5 was 
pointed out in other theoretical investigations and 
numerical runs, see ref. [13]. In experimental works 
[2, 4, 9] the oscillations were also detected, but  it was 
hard to determine their period in view of the necessity 
to have a very long tested section. 

Unfortunately,  we did not  manage to do a more 
detailed comparison with paper [3] in view of the lack 
of information about  time scales T, and Tp in the 
initial field. Besides, the inverse Stanton number,  St l 
in ref. [3], which is similar to the F 2 number  in our 
dimensionless variables, was not small enough to be 
described by the perturbation theory developed. 

The rate of the amplitude variance for the mass flux 
oscillation is dictated by expression (27) from ref. [6], 
taking d'  = 0 in the final stage of decay, we can find 

t d~]' 

~7' dt 
R~ 3 R 

(28) 

An analysis of expression (28) shows, that the 
exponent /30 is equal to - 1  at a = 1. The negative 
value of/3~ does not  contradict the physical sense, 
although it means an unlimited growth of the oscil- 
lations for ~. Oscillations of Q and Q / E  decay at any 
~r because the exponents,/3~),/30/e are always positive, 
as it will be shown below. 

Let us compare the amplitude of the TKE oscil- 
lation,/~' ,  with the mean value,/~, in a final stage of 
decay. The ratio/~'//~ can be estimated from the analy- 
sis made in ref. [6]. According to formula (25) from 
ref. [6], E'//~ = 2q'/t~o. Considering the exponent in 
the power law of type (2) for the value 2q'/tco at d '  
0, 

t z d(q')/t  t d(tT') 
-/3o,, - ~7, dt ~7' dt 1 

3 2 I2 +4 1 
and substituting q~ from equation (25) one can show 
that the value /30/, is positive at any ~; so the ratio 
/~'//~ tends to zero at any molecular Prandtl  number. 
The same is true for the ratio 0'/~ = - ( 2 q ' / t ~ o )  
( 1 + 0 ) / ~ 0 ,  (at o <  1 /3~/,~ = / 3 ~ e - / 3  > 0, at o >  1 

/3~/~ =/3g/e. > 0) as well as for the similar ratios K' /K,  
~;/~, ~/d'. 

Since, in the final stage the value of /7 is small 
as compared with/~, we can write 0 = glE/t ~- fiE/t, 
whence follows 

t d(~ /30+/3E+1, /30/e =/30+1.  (29) /30 = - ~ dW = 

Figure l(b) plots the dependence (calculated from 
equations (28), (29) and (24)) of the amplitude rate 
exponents for appropriate functions vs the molecular 
Prandtl  number  o. Here the exponent for Q,/3Q, is 
calculated from the exponents for ~ and for /~, 
/3Q = / 3 + / 3 e +  1 i f~  < 1 and/3 o = / 3 E + I  ifcr > 1. The 
amplitude of Q-oscillations decays faster than the 
wave-averaged value, Q, in the water case (~ =- 800) 
and slower in the air case (o = 0.73). Hence, in the 
final stage of decay a sine type dependence Q(~) should 
be noticeably shifted on the plot. For  the air case, this 
shift is very small as compared to peak values. In 
calculations of ref. [5] an opposite picture takes place 
(Fig. 22 from ref. [5]). 

The reason for such a discrepancy probably lies in 
the inaccuracy of the account of amplitudes in ref. [5]. 
Really, it is impossible to carry out the calculations in 
equation (1) up to "~ = 1022 and save the information 
on amplitude and phase of separate oscillation. It is 
known, that the oscillation period, T, is equal to about 
3.5 units of "~. Considering that for the proper cal- 
culation of oscillated functions it is necessary to have 
at least 20 time steps during a period ; we can estimate 
a required number  of time steps as n = 20 x 1022/3.5, 
that the computer is inaccessible for. Alternatively, in 
the calculations with very large time steps, averaged 
over oscillation values are obtained instead of true 
functions, as it has been shown above in Fig. 1 (a) (b). 
As follows from relations (21)-(26) in ref. [6], all 
the amplitudes are proportional to the size of the 
amplitude q', for which in ref. [6] a d(fferential equa- 
tion was obtained. Evidently, the value of q' cannot  
be determined from the local values of wave-averaged 
functions. If after a great number  of large steps in 
calculation one passes again to small ones with the 
aim to detect the oscillations, the algebraic relations 
between amplitudes should be obtained correctly, but  
the true value of amplitude q' and so the true values 
of other amplitudes will be lost. For  the proper analy- 
sis of the amplitudes in the far region it is necessary to 
add an additional differential equation for q', equation 
(27) in ref. [6], to the considered model. 

At the end of the given section we consider the 
postponed case, designated as A 1, which corresponds 
to the Prandtl  number  cr = 1. In this case qA = 0. 
R A = R~ = 1, OA = KA/(1 - - K A ) ,  and the value of KA 
remains uncertain. The analysis of this special case 
appears to be a little more complex, than of cases A2 
and B. For instance, the asymptotic limit KA can 
accept several possible values 0, l/3, 9/10. Depending 
on the selected value of KA the exponent /3 takes 



Homogeneous turbulence evolution in stratified flow II 1971 

different values. To select only one case we apply a 
continuity criterion for the dependence fl(a) at a = 1. 
From Fig. 1 (a) it is clear, that at a = 1 a zero value 
for fl is natural. It corresponds to the trivial solution 
of system (8) : 

flK = flR = flS = fl2 = 0 ,  f lU=3~4, 

q' = R' = O' = K' = 0 (30) 

K4 = 1/3, qA = O, ~A = 1/2, RA = 1 

and to a completely isotropic turbulence in the final 
stage of decay. 

3. SCALE ANALYSIS 

To understand better the essence of various modes 
we shall rely on scale analysis. To process exper- 
imental data in stratified flows the following length 
scales are usually introduced : 

(1) Lb = u221~2/N the buoyancy length scale charac- 
terized the largest turbulent scale which can be pro- 
duced or maintained by buoyancy force. The part 
of the turbulence kinetic energy (TKE) contained in 
vertical velocity fluctuations, u~, is represented 
through this scale as ½PNZL 2. 

(2) L, = ~l /2 / (dp /dx2)  the overturning or Ellison 
scale which is proportional to average deviation of 
density from its mean value p. In other words, L, is 
proportional to the displacement of fluid particles 
from their equilibrium level. This scale shows the level 
of existing potential energy due to density fluctuations 

1 - 2 2 P = ~pN L, and indicates predominant energy con- 
taining scale size. It is a convenient quality to measure. 

(3) Lo = (e, /N3) ~/2 the Ozmidov length scale at 
which buoyancy forces are equal to inertia forces. This 
scale is a buoyancy weighted turbulence dissipation 
rate. In fact, the Ozmidov scale is close to the largest 
possible turbulence scale allowed by buoyancy forces. 
If the integral length scale A~ or scale L, is much less 
than L~, the buoyancy does not affect the turbulence 
and the development of turbulence will mostly depend 
on the initial length scale ratio Lo/L , .  The Ozmidov 
scale is widely used in correlating experimental results 
on the collapse onset criteria ( A , / L o  = 7 according to 
ref. [10]), but it requires such a small value of the 
dissipation rate to be measured or estimated. This 
scale is of less importance in the region far from the 
turbulence source where wavefield motion dominates 
and estimations of dissipation rate might be 
suspicious. For the integral length scale A, in the 
theory of ref. [7] the simple approximation 
A ,  = L , / I  - d )  was obtained. 

In addition, Taylor microscales and macroscales 
for velocity and scalar field can be introduced in the 
ordinary way. Taylor microscales 2, = (5vu~7/e,) 1/2 and 
2p = (6~p2/e.~) j/2 are considered as describing the aver- 
age size of turbulence motion which determines dis- 
sipation processes, and Taylor macroscales L, = 

5u~-,./eu and Lp = 6u~"zp2/ep as describing the size of 
energy containing eddies. We suppose that in aniso- 
tropic flow these scales are still applicable at least for 
the turbulence in a horizontal plane. 

Together with discussing length scales in a final 
stage of turbulence decay we shall compare these 
scales, calculated numerically according to turbulence 
model we use, with experiments at small and moderate 
values of Nz*, that is, in a region to which the majority 
of experimental data belong. 

Helpful discussion regarding the scales Lb, L, and 
their roles in stratified flow is contained in refs. [2, 
4, 9]. The buoyancy length scale Lb is the scale for 
maximally possible overturning turbulent motion in a 
vertical plane. Turbulent scales are bounded by Lh, 
larger scales in vertical motion reveal themselves as 
internal waves. Lb is a source for L,. Figure 5, where 
scales Lb and L, are plotted against time, supports this 
point of view : phases of oscillations of Lb and L, are 
opposite, after the onset of collapse Lb and L, are 
linked together, L, slightly exceeding Lb. Despite the 
fact that both scales, Lh and L,, are closely linked, 
they behave differently in the initial region of the 
turbulent wake. In this region due to increasing poten- 
tial energy at the expense of kinetic energy, L~ 
decreases as Lt grows (until N~* ~ 2, see Fig. 5). Dur- 
ing further development of the wake the viscous dis- 
sipation causes these scales to decrease with approxi- 
mately the same rate, the ratio of L,/Lb being constant. 

The square of L~/L, represents the ratio of TKE 
closed in vertical fluctuations to potential energy of 
density fluctuations, (Lh/L,) 2 = K / &  Equalling kinetic 
energy 5pw- and potential energy ~q(~?p/Oz) ~p2 in 
gravity field one can obtain the criterion of pure wave- 
field motion as Lh/L, = 1. In the final stage of tur- 
bulence decay this ratio was proven to be equal to 1 
when c~ < 1. In this case, as it was shown in previous 
section, pw = 0. Oppositely, at ~r > 1 the ratio Lh/L, 
is equal to Lb/L, = x ~  = 0.447 and pn~ 4= 0. Both 
of these scales tend to zero at t--+ oo, Lh /M = 
( KE/e)  1'2 ~ O, L,/  M = (Ogle) ~'2 ~ O. At asymptotically 
large Prandtl number L h ~  L, ~ t -s/LS. 

The calculated variance of the Ozmidov and Kol- 
mogorov scales Lo and LK in a homogeneous stratified 
flow is shown in Fig. 6 in comparison with exper- 
imental data. Here four experimental sets at different 
inverse Froude numbers F are presented, as well as 
two calculated curves corresponding to extreme large 
and extreme small F numbers in each set. A rather 
good degree of conformity especially in the water case 
was obtained. In the initial region Lo > L~, further 
Lo ~ LK and then Lo < LK as the ratio Lo/L~  = 
(ERe/T~e) 3/4 constantly decreases. Full transition to 
waves (fossilisation) takes place at Lo/LK = 11 [9]. 
Close criterion for this ratio was proposed in exper- 
iments in ref. [4], L o / L x  = 12.8. According to ref. [1] 
the region A, >~ Lo > Lx  corresponds to three-dimen- 
sional turbulence and the region A~ ~> Lo ~ L~ to so 
called two-dimensional turbulence in the horizontal 
plane combined with vertical internal waves. 
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Figure 7 plots the variance of  the integral  length 
scale A, in stratified flow. As in previous figures com- 
par ison shows bet ter  agreement  in the water  case. In 
the air  case the wavefield character  of  the integral  
length scale variance is essential in calculated results, 
bu t  is very slight in experiments.  

The rat io Lo/A, is frequently used to est imate the 
collapse criteria. Oceanographic  experiments  show 
tha t  at  Lo/A, < 1 the turbulence structure tends to be 
2-D [1]. According to ref. [10] at  the poin t  of  collapse 
onset  Lo/A, = 1/7. According to ref. [16] at  this poin t  
A,/L, = 1.25. Collapse begins when  Lb/A, = 1 [1]. Full  

collapse occurs when  Lb/Au = 0.2~).3. Figures 5 7 
cor respond to the foregoing results very well. 

In  many  of  the criteria proposed in the l i terature 
the over turn ing  length scale L, is compared  with other  
turbulent  scales. I f  Lo/Lt ~ 1 tu rbulen t  waves begins 
to domina te  [1] (at LolL, < 0.7 according to ref. [4]). 
Ano the r  cri terion of  fossilisation was suggested as the 
rat io Lb/L,. IfLo/L, >> 1 (or Lb/A, >> 1) buoyancy  does 
not  take effect, the deve lopment  will s trongly depend 
on the initial condi t ions  (mostly on  the rat io LolL, 
[4], if Lo/Lt >> 1 this rat io  will decrease and  then the 
buoyancy  will effect the turbulence) .  A t  the break  
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poin t  [4, 9, 10] Lb/Lt = 1.25, Lo/L, = 1.43 inde- 
pendent ly  of  Re, active turbulence exists if  
LolL, >~ 1.25 and  Lx/L, <~ 0.14. The calculated scale 
rat ios LolL,, Lb/L,, L~/L, are plot ted in Fig. 8. In bo th  
cases tr < 1 (Fig. 8(a)) and  tr << 1 (Fig. 8(b)) in the 
collapsed state the rat io  Lb/L, sets at  a level of  1. On 
the whole Fig. 8 looks more universal  than  previous 
figures and  the degree of  conformi ty  between exper- 
imental  and  theoretical  predict ions is better. 

The variance of  the non-d imens iona l  Taylor ' s  mic- 
roscale 2~/M in experiments  practically coincides with 

the numerical  s imulat ion (Fig. 9). A plot  of  Taylor  
microscale for the scalar field 2,/M (Fig. 10) is quali- 

tatively similar, but  the slope of  numerical  curves is 
less, to a factor of  abou t  1.7. 

To describe the behavior  of  length scales in a final 
stage of  turbulence decay let us consider their  
expressions t h rough  the main  variables of  the problem 
(summarized below). 
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where  the  e x p o n e n t / ~ 3  is de r ived  as/~3 = / ~  a t  cr < 1 
a n d  /~3 = 0 a t  a > 1. T h e s e  e x p r e s s i o n s  s h o w  the  

p o w e r  laws  for  a p p r o p r i a t e  f u n c t i o n  a t  inf ini te  t ime.  
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The corresponding plot is built in Fig. 11. As was 
already mentioned, in a final stage two closely coupled 
scales Lb and L, decay with the same rate (curve 1) 
exceeding the Ozmidov length scale Lo (curve 2). So, 
the ratio Lb/L, is constant, the ratio Lo/Lt decreases 
(curve 7, see also Fig. 8). Taylor macroscales Lu and 
Lp decrease at a < 1.8, but increase at a > 1.8. Taylor 
macroscales usually describe the average size of energy 
containing vortexes in a turbulent flow. Large vortexes 
in a horizontal plane were observed in a number  of 
visualizations of stratified flow (see review [1]). Laws 
of Lu and L,, variance probably correspond, to some 
extent, to the behavior of such large structures. 
Because of being two-dimensional in their nature, 
large vortexes do not  affect the integral length scale 
substantially. The integral length scale Au grows, as 
Taylor microscales 2, and 2p, with the exponent 0.5. 
It indicates that integral length scale is fully deter- 
mined by dissipation processes. The Kolmogorov 
length scale Lx grows faster than Au. Asymptotically, 
at very large Prandtl  numbers cr the exponents for LK, 
L,, Lp are close to the universal exponent 0.5. 

4. CONCLUSIONS 

At the analysis of the final stage of turbulence decay 
the tendency of the functions K, R to different limits 
at a < 1 and a > 1 [5], is analytically justified. The 
dependence of these limits on molecular Prandtl  num- 
ber was obtained. 

There are three cases, named in the work A1, A2 
and B, distinguished by different asymptotic values of 
K: 1/3, 0 and 4/5. These asymptotic limits are given 
by the expressions (4)-(7). The rates of tendency to the 
limits were investigated in the form of equation (2). On 
the basis of such an analysis we concluded that molec- 
ular Prandtl numbers a < 1 correspond to the case A2, 
a > 1-- to the case B, and a = 1--to the case A1. 

Each of the cases A2 and B is subdivided into two 
asymptotic branches, A2a, A2b and B1, B2 with 
different rates of tendency to the limits. At increase of 
Prandtl  number  from zero up to unity the transition 
from the branch A2a to the branch A2b happens 
at a = 0.13. For  the branch A2a the exponents of 
tendency to the limits are identical for all functions 
and equal to - 3/4. The coefficients at powers in equa- 
tion (2) are given by the expressions (11)-(12). For  
the branch A2b these values are calculated from 
expressions (14) and (16), accordingly. 

In case B the transition from branch BI to branch 
B2 at an increase of Prandtl  number  occurs at 
aT2 = 1.7, the exponent in expression (2) is calculated 
on the basis of equations (19) and (21), and the 
coefficients from equations (22) and (23). 

It is shown, that the turbulence kinetic energy in 
density stratified media with molecular Prandtl  num- 
bers a < 1 and a > 1 decays under the different power 
laws, the exponent of decay is determined at r ~ 
by expression (24). The turbulence kinetic energy 
degenerates at a > 1, much slower than in the iso- 
tropic case due to a large part of this energy being 
enclosed in regular oscillation with weak attenuation. 
All asymptotic modes considered in the work and 
approximate analytical solutions are confirmed by the 
numerical calculation. 
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